精品播放一区二区_精品欧美黑人一区二区三区_欧美一区2区视频在线观看_欧美日韩国产片_欧美一区二区福利在线_色综合视频一区二区三区高清_欧美亚洲图片小说_欧美mv日韩mv国产网站app_精品精品国产高清a毛片牛牛_{关键词10

全國服務(wù)咨詢熱線:

13395745986

當前位置:首頁  >  技術(shù)文章  >  應(yīng)用案例 | T型光聲池的光聲光譜技術(shù)用于同時檢測基于三重共振模態(tài)的多組分氣體

應(yīng)用案例 | T型光聲池的光聲光譜技術(shù)用于同時檢測基于三重共振模態(tài)的多組分氣體

更新日期:2023-07-19      點擊次數(shù):1343
  T型光聲池的光聲光譜技術(shù)用于同時檢測基于三重共振模態(tài)的多組分氣體
 
  T-type cell mediated photoacoustic spectroscopy for simultaneous detection of multi-component gases based on triple resonance modality
 
  近日,來自西安電子科技大學(xué)、哈爾濱工業(yè)大學(xué)可調(diào)諧(氣體)激光技術(shù)國家級重點實驗室的聯(lián)合研究團隊發(fā)表了《T型光聲池的光聲光譜技術(shù)用于基于三重共振模態(tài)的多組分氣體的同時檢測》論文。
 
  Recently, the joint research team from  School of Optoelectronic Engineering, Xidian University,  National Key Laboratory of Science and Technology on Tunable Laser, Harbin Institute of Technology, published an academic papers T-type cell mediated photoacoustic spectroscopy for simultaneous detection of multi-component gases based on triple resonance modality.
 
  油浸式電力變壓器是現(xiàn)代電力分配和傳輸系統(tǒng)中最重要的絕緣設(shè)備之一。通過同時測量絕緣油中的溶解氣體,如一氧化碳(CO)、甲烷(CH4)和乙炔(C2H2),可以在電力變壓器的過熱、電弧和局部放電故障的早期診斷中提供合適的解決方案。變壓器故障主要可分為過熱故障和放電故障。CO、CH4和C2H2的含量變化是變壓器故障的主要指標。過熱故障包括裸金屬過熱、固體絕緣過熱和低溫過熱。裸金屬過熱的特征是烴類氣體(如CH4和C2H2)濃度的上升。上述兩種氣體的總和占總烴類氣體的80%以上,其中CH4占較大比例(>30 ppm)。CO的濃度(>300 ppm)強烈指示固體絕緣過熱和變壓器故障中的低溫過熱。當變壓器處于放電故障時,C2H2會急劇增加(>5 ppm,占總烴類氣體的20%-70%)。因此,本研究選擇CO、CH4和C2H2作為目標分析物。傳統(tǒng)的多組分氣體定量檢測方法,如氣相色譜儀、半導(dǎo)體氣體傳感器和電化學(xué)傳感器,在實時監(jiān)測、恢復(fù)時間、選擇性和交叉敏感性方面存在一定限制。基于光聲光譜技術(shù)的光學(xué)傳感器平臺具有高靈敏度、高選擇性、快速響應(yīng)、長壽命和成熟的傳感器設(shè)備等優(yōu)點,在多組分氣體傳感領(lǐng)域發(fā)揮著重要作用。已經(jīng)開發(fā)出多種基于光聲光譜技術(shù)的多組分氣體傳感器模式,如傅里葉變換紅外光聲光譜模式、基于寬帶檢測的熱輻射體或黑體輻射體使用多個帶通濾波器、多激光器與時分復(fù)用(TDM)方法的結(jié)合,以及采用多共振器和頻率分割復(fù)用(FDM)方案。然而,由于寬帶光源的相對弱強度,弱光聲(PA)信號易受到背景噪聲的干擾,這是高靈敏度檢測的主要障礙。
 
  Oil-immersed power transformer is one of the most important insulation equipment in modern power distribution and transmission systems. Simultaneous measurements of the dissolved gases in insulating oil, such as carbon monoxide (CO), methane (CH4) and acetylene (C2H2), can represent a suitable solution in early diagnosis of overheating, arcing and partial discharge failures of power transformers . Transformer fault can mainly be divided into overheating fault and discharge fault. The content changes of CO, CH4, and C2H2 are the main indicators of transformer failure. Overheating fault includes bare metal overheating, solid insulation overheating and low temperature overheating. The bare metal overheating is characterized by the rising concentration of hydrocarbon gas, such as CH4 and C2H2. The sum of the above two gases accounts for more than 80% of the total hydrocarbon gas, and CH4 accounts for a larger proportion (>30 ppm). The concentration of CO (>300 ppm) strongly indicates the solid insulation overheating and the low temperature overheating in the transformer failure. When the transformer is in discharge fault, the C2H2 will increase dramatically (>5 ppm, 20%− 70% of the total hydrocarbon gas). Therefore, CO, CH4, and C2H2 are selected as the target analytes in this work. The traditional quantitative detection of multiple analytes, such as gas chromatographs, semiconductor gas sensors and electrochemical sensors, were limited in terms of real time monitoring, recovery time, poor selectivity and cross sensitivity. Photoacoustic spectroscopy (PAS)-based optical sensor platforms, which feature the advantages of high sensitivity, high selectivity, fast response, long lifetime and well-established sensing devices, have played an important role in the field of multi-component gas sensing. Various PAS-based multi-gas sensor modalities have been developed, such as Fourier transform infrared PAS modality, broadband detection based thermal emitters or blackbody radiators using several band-pass filters, the use of multi-lasers combined time-division multiplexing (TDM) methods , and multi-resonators with frequency-division multiplexing (FDM) schemes. Due to the relatively poor intensity of the broadband source, the weak photoacoustic (PA) signals were sensitively affected by the background noise, which was a major obstacle to highly sensitive detection.
 
  由于吸收和共振圓柱體共同決定了其共振頻率,設(shè)計并驗證了一種T型光聲池作為適當?shù)膫鞲衅鳌Mㄟ^引入激勵光束位置優(yōu)化,從模擬和實驗中研究了三種指定的共振模式,呈現(xiàn)了可比較的振幅響應(yīng)。使用QCL、ICL和DFB激光器作為激發(fā)光源,同時測量CO、CH4和C2H2,展示了多氣體檢測的能力。
 
  A T-type photoacoustic cell was designed and verified to be an appropriate sensor, due to the resonant frequencies of which are determined jointly by absorption and resonant cylinders. The three designated resonance modes were investigated from both simulation and experiments to present the comparable amplitude responses by introducing excitation beam position optimization. The capability of multi-gas detection was demonstrated by measuring CO, CH4 and C2H2 simultaneously using QCL, ICL and DFB lasers as excitation sources respectively.
 
  圖片顯示了配備了T型光聲池的基于PAS的多組分氣體傳感器配置的示意圖。使用三個激發(fā)激光器作為激光源,包括DFB ICL(HealthyPhoton,型號HPQCL-Q)、DFB QCL(HealthyPhoton,型號QC-Qube)和NIR激光二極管(NEL),分別在2968 cm−1、2176.3 cm−1和6578.6 cm−1處發(fā)射,以實現(xiàn)對CH4、CO和C2H2的同時檢測。ICL、QCL和NIR激光二極管在目標吸收波長處的光功率分別為8 mW、44 mW和32 mW,通過熱功率計(Ophir Optronics 3 A)進行測量。所有激光源都通過調(diào)節(jié)電流和溫度控制來驅(qū)動。
 
  A schematic diagram of PAS-based multi-component gas sensor configuration equipped with the developed T-type PAC is shown in Fig. Three excitation laser sources, including a DFB ICL (HealthyPhoton, model HPQCL-Q), a DFB QCL (HealthyPhoton, model QCQube) and an NIR laser diode (NEL) emitting at 2968 cm−1, 2176.3 cm−1 and 6578.6 cm−1, were employed to realize the simultaneous detection of CH4, CO and C2H2. The optical powers of the ICL, QCL and NIR laser diode measured by a thermal power meter (Ophir Optronics 3 A) at the target absorption lines were 8 mW, 44 mW and 32 mW, respectively. All the laser sources were driven by tuning the current and temperature control.
 
圖片
  Fig.The schematic diagram of multi-resonance PAS-based gas sensor configuration equipped with the developed T-type PAC for multi-component gas simultaneous detection. Operating pressure: 760 Torr.
 
圖片
HealthyPhoton, model HPQCL-Q
 
圖片
HealthyPhoton, model QCQube
 
  結(jié)論
 
  建立了基于T型光聲池的多共振光聲光譜氣體傳感器,并驗證其能夠進行多組分同時檢測,達到ppb級別的靈敏度。通過有限元分析(FEA)模擬優(yōu)化和實驗光束激發(fā)位置設(shè)計,三個指定的諧振頻率的光聲響應(yīng)相互比較,確保了同時檢測多種微量氣體的高性能。選擇了CO、CH4和C2H2這三種可燃氣體作為目標氣體,使用QCL(4.59 µm,44 mW)、ICL(3.37 µm,8 mW)和NIR激光二極管(1.52 µm,32 mW)作為入射光束進行同時檢測驗證。F1模式下,光束照射到緩沖腔體壁上,信噪比(SNR)相比通過吸收圓柱體的情況提高了4.5倍。實驗得到了CO、CH4和C2H2的最小檢測限(1σ)分別為89ppb、80ppb和664ppb,對應(yīng)的歸一化噪聲等效吸收系數(shù)(NNEA)分別為5.75 × 10−7 cm−1 W Hz−1/2、1.97 × 10−8 cm−1 W Hz−1/2和4.23 × 10−8 cm−1 W Hz−1/2。對濕度交叉敏感性進行改進的研究提供了對光聲光譜傳感器在濕度松弛相關(guān)效應(yīng)方面的更好理解。利用單個光聲腔體和單個探測器進行多組分氣體傳感的這種開發(fā)的光聲光譜模式,具有在電力變壓器故障的早期診斷方面的獨特潛力。
 
  Conclusions
 
  A T-type cell based multi-resonance PAS gas sensor was established and verified to be capable of multi-component simultaneous ppb-level detection. By the FEA simulation optimization and experimental beam excitation position design, the PA responses of the three designated resonant frequencies are comparable which guarantees the high performance of multiple trace gas detection simultaneously. The three combustible species of CO, CH4 and C2H2 were selected as target gases for the simultaneous detection verification using a QCL (4.59 µm, 44 mW), an ICL (3.37 µm, 8 mW) and a NIR laser diode (1.52 µm, 32 mW) as incident beams. The SNR for F1 mode with the beam irradiating on the buffer wall was increased by 4.5 times than that of passing through absorption cylinder. The experimental MDLs (1σ) were achieved as of 89ppb (CO), 80ppb (CH4) and 664ppb (C2H2) have been acquired, respectively, corresponding to the NNEA coefficients of5.75 × 10−7 cm−1 W Hz−1/2, 1.97 × 10−8 cm−1 W Hz−1/2 and 4.23 × 10−8 cm−1 W Hz−1/2. An improved humidification investigation regarding cross-sensitivity analysis provides a better understanding of PAS sensors in humidity relaxation related effects. This developed PAS modality of utilizing a single PAC and a single detector for multicomponent gas sensing exhibits unique potential for early diagnosis of power transformer failures.
 
圖片
  Simulated spectral distribution characteristics of CO, CH4 and C2H2 based on HITRAN Database. Temperature and pressure: 296 K and 1 atm respectively.
 
圖片
  Schematic structure of the developed T-type PAC.
 
圖片
  Simulated sound pressure distribution of T-type PAC model for the three selected resonance modes by FEA method. Color bar: Simulated sound pressure (Pa).
 
圖片
  Simulation results of the T-type PAC acoustic characteristics with the incident beam position optimization. (a) and (b): Two different incident ways of the excitation beam; (c), (d) and (e): The simulated pressure amplitude response vs. frequency for F1, F2 and F3 detection, respectively.
 
圖片
  The experimental results of PA signals for different resonance modes by scanning the incident excitation beam. (a) Schematic diagram of the light source scanning process in the T-type PAC. Dashed line: Central axis. (b) The PA amplitude of 100 ppm CO vs. the beam position of ICL source. (c) The PA amplitude of 50 ppm CH4 vs. the beam position of ICL source. (d) The PA amplitude of 50 ppm C2H2 vs. the beam position of DFB laser diode. Insert: The irradiated surface of PAC.
 
圖片
  The experimental results for CH4 detection with the incident beam position optimization. (a) Two different ways (I1, I2) of incident excitation beam using ICL for CH4 measurement; (b) The PA amplitude vs. frequency of F1 for the two incident ways; (c) The PA spectra of 100 ppm CH4 in the ICL tunning range using both incidence ways; (d) The PA signal amplitude of CH4 vs. gas concentration for two incidence ways.
 
圖片
  Schematic of the improved humidification system for humidity control.
 
  Reference
 
  Le Zhang, Lixian Liu, Xueshi Zhang, Xukun Yin , Huiting Huan, Huanyu Liu, Xiaoming Zhao, Yufei Ma, Xiaopeng Shao,T-type cell mediated photoacoustic spectroscopy for simultaneous detection of multi-component gases based on triple resonance modality,Photoacoustics 31 (2023) 100492.
 
  https://doi.org/10.1016/j.pacs.2023.100492
 

全國統(tǒng)一服務(wù)電話

0574-88357326

電子郵箱:info@healthyphoton.com

公司地址:浙江省寧波市鄞州區(qū)潘火街道金源路中創(chuàng)科技園1號樓305室

微信公眾號

精品播放一区二区_精品欧美黑人一区二区三区_欧美一区2区视频在线观看_欧美日韩国产片_欧美一区二区福利在线_色综合视频一区二区三区高清_欧美亚洲图片小说_欧美mv日韩mv国产网站app_精品精品国产高清a毛片牛牛_{关键词10
日韩欧美国产一二三区| 成人晚上爱看视频| 91视视频在线观看入口直接观看www | 亚洲色图欧美激情| 国产成人午夜精品5599| 日韩欧美一区二区在线视频| 国产亚洲午夜高清国产拍精品| 久久精品国产**网站演员| 91福利小视频| 日韩三级电影网址| 免费久久精品视频| 91精品国产色综合久久不卡蜜臀 | 91福利区一区二区三区| 亚洲人成在线播放网站岛国| jlzzjlzz亚洲女人18| 欧美午夜电影一区| 偷拍一区二区三区| 欧美电影一区二区三区| 国产精品视频第一区| 成人在线综合网| 欧美久久久久久久久久| 欧美bbbbb| 精品国产伦一区二区三区观看方式| 国产精品另类一区| 欧美日韩一区二区免费视频| 日韩女优电影在线观看| 麻豆精品精品国产自在97香蕉| 日韩一区二区三区在线视频| 综合欧美亚洲日本| 欧美性猛交xxxxx免费看| 精品少妇一区二区三区免费观看| 国产一区二区三区精品欧美日韩一区二区三区 | 成人av在线播放网址| 欧美老人xxxx18| 久久精品理论片| 欧美综合一区二区三区| 日韩精品国产欧美| 精品国产一区二区亚洲人成毛片 | 久久嫩草精品久久久精品| 国产成+人+日韩+欧美+亚洲| 制服.丝袜.亚洲.中文.综合| 国产精品一线二线三线精华| 制服丝袜一区二区三区| 国产盗摄一区二区三区| 日韩欧美一区在线| av亚洲精华国产精华精| 久久蜜桃av一区精品变态类天堂| 97久久精品人人做人人爽50路| 日韩免费高清视频| 黄网站色欧美视频| 国产精品久久久久久亚洲毛片 | 日韩高清一级片| 91福利小视频| 国产一区二区导航在线播放| 日韩午夜电影在线观看| 91在线视频观看| 欧美极品少妇xxxxⅹ高跟鞋 | 韩国一区二区三区| 精品少妇一区二区三区在线播放| 97久久久精品综合88久久| 国产精品久久久久影院色老大| 欧美亚洲禁片免费| 亚洲成va人在线观看| 在线亚洲免费视频| 成人av综合在线| 中文字幕日韩一区| 日韩精品在线网站| 国产精品99久| 欧美经典一区二区三区| 欧美久久久久久久久| 免费成人深夜小野草| 欧美一区二区精品在线| 日本乱人伦aⅴ精品| 午夜久久久影院| 欧美一区二区三区思思人| 精品久久久一区| 亚洲午夜一区二区| 91麻豆精品91久久久久久清纯 | 日本不卡一二三| 精品对白一区国产伦| 欧美日韩在线亚洲一区蜜芽| 日本va欧美va精品| 久久综合给合久久狠狠狠97色69| 欧美裸体一区二区三区| 精品一区二区三区在线观看| 精品国产91洋老外米糕| 欧美高清性hdvideosex| 国产一区二区在线观看视频| 日本一区二区免费在线| 在线视频欧美区| 精品久久久久久中文字幕| 日韩av网站免费在线| 久久精品无码一区二区三区| 精品美女在线播放| 精品免费在线视频| 蜜臀久久99精品久久久久宅男| 精品国产一区二区三区四区四| 欧美一级视频精品观看| 成人美女在线观看| 午夜伦欧美伦电影理论片| 久久亚洲一区二区三区四区| 精品国产自在久精品国产| 黑人欧美xxxx| 青青青伊人色综合久久| 国产精品久久毛片| 制服丝袜亚洲播放| 欧美不卡在线视频| 色婷婷激情一区二区三区| 韩国女主播成人在线观看| 伊人开心综合网| 久久影院午夜论| 欧美日韩精品三区| 91精品国产综合久久久蜜臀粉嫩 | 日日夜夜一区二区| 中文幕一区二区三区久久蜜桃| 欧美日韩大陆一区二区| 欧美一区二区三区四区五区 | 日本不卡在线视频| 1024精品合集| 欧美精品一区二区不卡| 欧美在线不卡视频| 欧美一区二区三区精品| 欧美体内谢she精2性欧美| 国产成人精品一区二| 免费黄网站欧美| 亚洲午夜久久久久久久久电影院| 久久久久综合网| 欧美一级黄色录像| 色婷婷精品大在线视频| 91精品欧美一区二区三区综合在| 狠狠色狠狠色综合日日五| 高清久久久久久| 精品一区二区三区欧美| 天天综合天天做天天综合| 一区二区三区在线高清| 国产精品美女久久久久久久久| 精品捆绑美女sm三区| 5566中文字幕一区二区电影| 色狠狠综合天天综合综合| 日韩视频一区二区| 91精品国产综合久久香蕉的特点 | 久久91精品久久久久久秒播| 日韩中文字幕区一区有砖一区 | 欧美一区二区三区在线观看| 欧美性受xxxx| 91成人在线观看喷潮| 精品国产a毛片| 精品国产乱码久久久久久浪潮 | 欧美日韩国内自拍| 96av麻豆蜜桃一区二区| proumb性欧美在线观看| av激情亚洲男人天堂| 高清av一区二区| 国产99精品国产| 成人精品鲁一区一区二区| 粉嫩av一区二区三区粉嫩| 成人一区二区三区在线观看 | 亚洲欧美乱综合| 亚洲精品一二三| 亚洲激情五月婷婷| 亚洲午夜在线视频| 肉色丝袜一区二区| 久久不见久久见免费视频1| 久久超碰97人人做人人爱| 久久狠狠亚洲综合| 国产成人在线视频网址| 高清不卡在线观看| 91麻豆精品秘密| 欧美性猛片xxxx免费看久爱| 欧美性视频一区二区三区| 欧美久久免费观看| 色综合久久综合| 欧美精品久久久久久久多人混战| 制服丝袜中文字幕一区| 26uuu精品一区二区三区四区在线 26uuu精品一区二区在线观看 | 国产成人综合在线播放| 成人激情动漫在线观看| 欧美午夜女人视频在线| 91传媒视频在线播放| 91精品国产色综合久久不卡电影 | av高清久久久| 欧美午夜精品一区二区蜜桃 | 成a人片亚洲日本久久| 欧美日韩中文在线| 91麻豆精品国产91久久久久| 亚洲精品一线二线三线| 91麻豆精品国产自产在线| 2023国产精品| 亚洲最大成人综合| 国产在线视频一区二区| 精品人伦一区二区三区蜜桃免费| 欧美人妖巨大在线| 欧美日韩日日摸| 久久久www成人免费无遮挡大片| 亚洲欧美偷拍卡通变态| 日本免费新一区视频| 99久久精品国产观看| 欧美精品九九99久久| 精品视频123区在线观看| 久久亚洲综合色一区二区三区|