精品播放一区二区_精品欧美黑人一区二区三区_欧美一区2区视频在线观看_欧美日韩国产片_欧美一区二区福利在线_色综合视频一区二区三区高清_欧美亚洲图片小说_欧美mv日韩mv国产网站app_精品精品国产高清a毛片牛牛_{关键词10

全國服務咨詢熱線:

13395745986

當前位置:首頁  >  技術文章  >  應用案例 | 基于深度神經網絡的無需壓力校準和輪廓擬合的氣體傳感光譜技術

應用案例 | 基于深度神經網絡的無需壓力校準和輪廓擬合的氣體傳感光譜技術

更新日期:2023-08-30      點擊次數:2062

近日,來自安徽大學的周勝副教授團隊發表了《基于深度神經網絡的無需壓力校準和輪廓擬合的氣體傳感光譜技術》論文。

Recently, the research team from Associate Professor Zhou Sheng's from Anhui University published an academic papers Pressure calibration- and profile fitting-free spectroscopy technology based on deep neural network for gas sensing.

 

甲烷(CH4)是天然氣的主要成分,在工業生產和日常生活中廣泛用作燃料。此外,甲烷是一種重要的溫室氣體,其濃度對全球氣候產生重要影響。因此,甲烷的測量對環境監測、生物醫藥和能源研究具有重要意義。氣體濃度通常通過各種微量氣體傳感器進行測量,例如氣相色譜儀、半導體氣體傳感器和電化學設備。半導體氣體傳感器在適當的操作環境下具有ppm級別的靈敏度。激光吸收光譜技術具有高選擇性、高靈敏度、快速和多成分監測等優勢,目前廣泛用于各種氣體的檢測。激光吸收光譜技術可以準確測量氣體分子的特征吸收線,并基于可調諧激光有效降低其他氣體光譜線的干擾。此外,它提供了實時原位氣體檢測的可能性,這對于從工業過程到環境變化的各種現象的理解和監測至關重要。氣體分子可以通過其指紋吸收光譜進行有效識別,包括典型的所謂“自展寬"參數和“空氣展寬"參數。光譜線參數是壓力和溫度的函數。濃度測量的準確性取決于壓力穩定性和光譜擬合精度。對于定量光譜分析,傳統上通過準確的模型對光譜進行擬合,同時壓力和溫度必須定期校準,尤其是在相對大的環境波動情況下。因此,為實現所需的準確性,系統的復雜性增加了。

Methane (CH4), which is the main component of natural gas, is widely used as fuel in industrial production and daily life. In addition, CH4 is an important greenhouse gas whose concentration has a substantial influence on global climate. Therefore, the measurement of CH4 has significant importance for environmental monitoring, biomedicine, and energy research. The gas concentrations are commonly measured by various trace gas sensors, such as gas chromatographs, semiconductor gas sensors, and electrochemical devices. The semiconductor gas sensors have a sensitivity of ppm level under a suitable operating environment. The laser absorption spectroscopy, which has the advantages of high selectivity, high sensitivity, and fast and multi-component monitoring, is currently widely used in the detection of a variety of gases. Laser absorption spectroscopy technology can accurately measure the characteristic absorption lines of gas molecules and effectively reduce the interference of other gas spectral lines based on the tunable lasers. Moreover, it provides the possibility of real-time in-situ gas detection, which is crucial for understanding and monitoring a variety of phenomena from industrial processes to environmental change. A gas molecule can be effectively identified by its fingerprint absorption spectrum, including typical so-called “self-broadening" parameters and “air-broadening" parameters. The spectral line parameters are functions of pressure and temperature. The accuracy of concentration measurement depends on pressure stability and spectral fitting accuracy. For quantitative spectral analysis, the spectra are traditionally fitted by an accurate model, while the pressure and temperature must be calibrated on time, especially in the case of relatively large environmental fluctuations. Consequently, the complexity of system is increased to achieve the required accuracy.

 

目前,人工智能的快速發展為解決這個問題提供了一種新途徑。人工神經網絡已被用于氣體識別,并在足夠訓練數據的條件下表現出良好性能。基于Hopfield自聯想記憶算法的神經網絡已用于識別五種類似的醇的紅外光譜。反向傳播神經網絡用于從混合氣體中識別目標氣體,證明了卷積神經網絡(CNN)模型可以有效提高識別準確性。此外,最近的研究表明深度神經網絡也可以應用于振動光譜分析。卷積神經網絡和自編碼器網絡被用于處理一維振動光譜數據。與傳統氣體檢測技術相比,輔以深度學習的氣體傳感器可以實現準確的靈敏度測量,并降低異常檢測的魯棒性。深度神經網絡(DNN)可以在經過足夠樣本訓練后直接從吸收光譜中學習特征,實現不需要壓力校準和輪廓擬合的氣體濃度直接識別。這種網絡為檢索氣體濃度提供了一種新途徑,無需昂貴且復雜的壓力控制器。為了展示提出的DNN輔助算法的性能,構建了一個基于DFB激光二極管的甲烷檢測氣體傳感器系統。預測的濃度與校準值相當吻合。這項研究表明,基于DNN的激光吸收光譜在大氣環境監測、呼氣檢測等方面具有顯著潛力。

Currently, the rapid development of artificial intelligence provides a new way to solve this problem. The artificial neural network has been used for gas identification and shows a good performance under the condition of sufficient data for training. The infrared spectra of five similar alcohols has been identified by a neural network based on the Hopfield self-associative memory algorithm . A back propagation neural network is used to recognize target gas from the mixtures of gases, which proved that the convolutional neural networks (CNN) model can improve identification accuracy effectively. In addition, recent studies indicate that deep neural networks can also be applied to vibrational spectral analysis. The convolutional neural and auto encoder networks are used to process onedimensional vibrational spectroscopic data. Compared with traditional gas detection technology, the gas sensors assisted with deep learning can achieve accurate sensitivity measurement and reduce the robustness of anomaly detection.

A deep neural network (DNN), which can learn features directly from the absorption spectra after training with sufficient samples, achieves the direct identification of gas concentration free of pressure calibration and profile fitting. This network provides a new way to retrieve gas concentrations without expensive and complicated pressure controllers. To demonstrate the performance of proposed DNN assisted algorithm, a DFB diode laser-based gas sensor system for CH4 detection is constructed. The predicted concentrations are in good agreement with the calibrated values. This study indicates that DNN-based laser absorption  spectroscopy has remarkable potential in atmospheric environmental monitoring, exhaled breath detection and etc..

 

 

實驗裝置

用于獲取甲烷(CH4)氣體吸收光譜的實驗裝置如圖1所示。一臺近紅外DFB激光二極管,最大峰值輸出功率為20毫瓦,被用作光源。通過控制激光溫度和電流,激光可以在6045 cm-1到6047 cm-1范圍內進行調諧寧波海爾欣光電科技有限公司為此項目提供激光驅動器,型號為QC-1000所選CH4在6046.95 cm-1附近的吸收線在圖2中基于從HITRAN數據庫獲取的光譜線參數進行了模擬。DFB激光二極管經過纖維準直器進行準直,然后由一塊CaF2分束器進行對準,分束后的可見紅光(632.8納米)光束用作跟蹤激光。隨后,光束被送入一個7米有效光程的多程傳輸池,并且池內的壓力由壓力控制器、流量控制器和隔膜泵協同控制。一個典型頻率為100赫茲的三角波被用作掃描信號,以驅動激光二極管。最后,激光通過一個InGaAs光電探測器進行檢測,并被數據采集單元卡獲取。信號隨后傳輸到計算機,并由自制的LabVIEW程序進行分析。

Experimental setup

The experimental setup used to obtain CH4 gas absorption spectra is depicted in Fig. 1. A near-infrared DFB diode laser with a maximum peak output power of 20 mW is used as the optical source. The laser can be tuned from 6045 cm?1 to 6047 cm?1 by controlling the laser temperature and current via the controller (QC-1000, Healthy photon Co., Ltd.). The absorption line of selected CH4 near 6046.95 cm?1 is simulated based on spectral line parameters obtained from the HITRAN database in Fig. 2. The DFB diode laser is collimated by a fiber collimator and aligned by a CaF2 beam splitter with a beam of visible red light (632.8 nm) as the tracking laser. Subsequently, the beam is sent to a multi-pass cell with a 7 m effective optical length, and the pressure inside the cell is collaborative controlled by a pressure controller, a flow controller, and a diaphragm pump. A triangular wave with a typical frequency of 100 Hz is used as a scanning signal to drive the diode laser. Finally, the laser is detected through an InGaAs photodetector and acquired by a data acquisition unit card. The signal is subsequently transmitted to the computer and analyzed by the homemade LabVIEW program.

 

QC-1000(1) 

 QC-1000, Healthy photon Co., Ltd.

 

 

Fig. 2. Experimental device diagram. 

Fig. 1. Experimental device diagram.

 

Fig. 3. 

Fig. 2. The spectral line intensities of CH4 in the tuning range of 6046.93–6046.96 cm?1 and the cross-section of the selected line obtained from the HITRAN database.

 

 

 

結論

總體而言,本項目開發了基于DNN算法和激光吸收光譜的概念驗證氣體傳感器,并設計了基于DFB激光二極管的甲烷檢測傳感器系統。此外,通過計算RMSE和訓練時間評估了DNN算法的性能,并優化了DNN層、神經元數量和epochs等參數,以獲取最佳參數。提出了改進的系統來分析和預測氣體吸收光譜數據,在甲烷濃度預測方面表現出良好的準確性和穩定性。不同濃度的甲烷預測值與相應的理論值線性擬合,證明其在實際領域應用中具有巨大潛力,尤其適用于惡劣環境。

 

Conclusions

Overall, a proof-of-concept gas sensor based on the DNN algorithm and laser absorption spectroscopy is developed, and a CH4 detection sensor system based on the DFB diode laser is designed in this paper. In addition, the performance of the DNN algorithm is evaluated by calculating RMSE and training times, and the parameters, which include DNN layers, neuron number, and epochs, are optimized to obtain optimal parameters. The modified system is proposed to analyze and predict the gas absorption spectrum data, demonstrating good accuracy and stability in the prediction of CH4 concentrations. The predicted values of methane with different concentrations are linearly fitted with the corresponding theoretical value, which proves it has great potential in practical field applications, especially for harsh environments.

 

 

References

Pressure calibration- and profile fitting-free spectroscopy technology based on deep neural network for gas sensing, Measurement 204 (2022) 11207


全國統一服務電話

0574-88357326

電子郵箱:info@healthyphoton.com

公司地址:浙江省寧波市鄞州區潘火街道金源路中創科技園1號樓305室

微信公眾號

精品播放一区二区_精品欧美黑人一区二区三区_欧美一区2区视频在线观看_欧美日韩国产片_欧美一区二区福利在线_色综合视频一区二区三区高清_欧美亚洲图片小说_欧美mv日韩mv国产网站app_精品精品国产高清a毛片牛牛_{关键词10
日韩欧美国产骚| av福利精品导航| 欧美亚洲综合久久| 欧美另类高清zo欧美| 亚洲激情在线播放| 欧美日韩国产专区| 欧美老肥妇做.爰bbww| 亚洲国产精品人人做人人爽| 丁香五六月婷婷久久激情| 欧美日韩精品免费观看视频| 亚洲一区二区在线播放相泽| 欧美性猛交xxxx黑人猛交| 日韩视频免费观看高清完整版在线观看| 亚洲成人av电影| 欧美人成免费网站| 国产精品久线观看视频| 波多野洁衣一区| 制服.丝袜.亚洲.另类.中文| 午夜日韩在线观看| 欧美一区二区视频免费观看| 中文字幕av一区二区三区| 99在线精品观看| 欧美电影免费观看高清完整版在线观看 | a在线欧美一区| 精品视频在线视频| 日韩黄色片在线观看| 欧美一级二级在线观看| 一区二区三区免费| 欧美久久一区二区| 亚洲特级片在线| 欧美视频一区二| 国产精品美女一区二区三区| 欧美性猛交xxxx富婆弯腰| 久久久久国产一区二区三区四区| 成人h动漫精品一区二| 欧美哺乳videos| 成人app下载| 久久久午夜电影| 欧美日韩中文字幕日韩欧美| 日本一区二区三区四区在线视频| 欧美视频中文在线看| 国产精品丝袜在线| 欧美中文字幕一区| 亚洲欧美激情视频在线观看一区二区三区 | 成人自拍视频在线观看| 欧美精品乱码久久久久久 | 日韩久久一区二区| 欧美日韩不卡视频| 亚洲电影一级片| 精品久久五月天| 久久成人免费网| 欧美一级淫片007| 91麻豆高清视频| 国产精品色一区二区三区| 欧美亚洲高清一区| 亚洲高清免费观看| 91福利精品视频| 国产一区二区三区四| 日韩免费高清视频| 日韩欧美中文第一页| 亚洲图片另类小说| 精品欧美乱码久久久久久| 麻豆91精品91久久久的内涵| 欧美日韩国产bt| 99国产精品国产精品毛片| 国产精品高清亚洲| 日韩欧美国产综合| 极品销魂美女一区二区三区| 日韩午夜在线观看视频| 色香蕉久久蜜桃| 亚洲一区二区三区四区中文字幕| 91黄色在线观看| 91色婷婷久久久久合中文| 日韩毛片高清在线播放| 亚洲精品一区二区三区精华液 | 亚洲一二三区在线观看| 一本色道亚洲精品aⅴ| 国产91在线|亚洲| 国产精品久久久久aaaa| 欧美精品一区二区在线播放 | 亚洲国产日韩一级| 欧美日韩一级视频| 欧美视频在线观看免费| 亚洲电影第三页| 日韩欧美一二区| 欧美高清精品3d| 丁香婷婷深情五月亚洲| 中文字幕一区二区三区色视频| 91福利国产精品| 色综合天天性综合| 美女任你摸久久| 中文字幕成人av| 欧美色老头old∨ideo| 精品国产免费一区二区三区四区| 色中色一区二区| 久久97超碰国产精品超碰| 中文字幕不卡的av| 欧洲中文字幕精品| 色呦呦国产精品| 国模套图日韩精品一区二区| 国产精品夫妻自拍| 欧美一区二区三区视频| 777亚洲妇女| 97成人超碰视| 精品夜夜嗨av一区二区三区| 最新久久zyz资源站| 欧美一区二区三区系列电影| 日韩一区二区三区四区五区六区| a级精品国产片在线观看| 日韩成人精品视频| 成人免费一区二区三区在线观看| 555www色欧美视频| 精品国产一区二区三区忘忧草 | 国内外成人在线| 亚洲一区二区三区四区在线观看| 久久一日本道色综合| 欧美男女性生活在线直播观看| 4438x亚洲最大成人网| 欧美视频专区一二在线观看| 国内精品久久久久影院薰衣草| 亚洲动漫第一页| 18欧美亚洲精品| 久久久精品2019中文字幕之3| 欧美日韩免费观看一区二区三区| 欧美一区二区成人| 在线一区二区视频| 精品久久久久久久久久国产| 国产精品一区二区久久不卡| 日本欧美一区二区在线观看| 亚洲人吸女人奶水| 国产日韩v精品一区二区| 91精品国产91综合久久蜜臀| 在线日韩av片| 色综合久久中文综合久久牛| 欧美日韩黄视频| 色妹子一区二区| 欧美日韩亚洲精品内裤| 成人动漫中文字幕| 国产成人在线网站| 精品在线播放免费| 日韩成人免费在线| 天天操天天综合网| 亚洲国产一区二区视频| 亚洲欧美国产毛片在线| 国产精品大尺度| 亚洲欧洲无码一区二区三区| 国产日韩欧美精品一区| 久久久99精品久久| 久久久久久日产精品| 久久久亚洲午夜电影| 久久综合久久综合亚洲| 久久久久成人黄色影片| 国产视频视频一区| 中文字幕精品一区二区三区精品 | 精品久久久久久久一区二区蜜臀| 欧美一区二区三区四区五区| 91麻豆精品国产无毒不卡在线观看| 8x福利精品第一导航| 91精品国产乱| 亚洲一卡二卡三卡四卡| 一区二区三区小说| 亚洲午夜在线视频| 日韩精品91亚洲二区在线观看| 婷婷国产v国产偷v亚洲高清| 免费的成人av| 国产一区二区三区四区在线观看| 国产福利91精品一区二区三区| 成人视屏免费看| 欧美视频在线观看 亚洲欧| 91国模大尺度私拍在线视频| 欧美精品三级日韩久久| 欧美成人精品1314www| 欧美影院精品一区| 欧美一级xxx| 中文字幕av资源一区| 一区二区三区中文免费| 免费久久99精品国产| 大桥未久av一区二区三区中文| 99久久99久久精品免费看蜜桃 | 国产一区二区不卡在线| 99精品国产热久久91蜜凸| 欧洲另类一二三四区| 日韩免费性生活视频播放| 精品视频123区在线观看| 欧美不卡一区二区三区| 亚洲视频每日更新| 日本va欧美va欧美va精品| 成人夜色视频网站在线观看| 在线观看91精品国产入口| 亚洲精品在线一区二区| 日韩欧美中文字幕制服| 国产精品成人免费| 青青青伊人色综合久久| 99久久免费视频.com| 欧美人xxxx| 欧美裸体bbwbbwbbw| 国产精品久久久久久亚洲伦| 日韩高清在线一区| 99国产精品一区| 日韩午夜在线影院|